New covalent modifications of phosphatidylethanolamine by alkanals: mass spectrometry based structural characterization and biological effects

نویسندگان

  • Andrea Annibal
  • Kristin Schubert
  • Ulf Wagner
  • Ralf Hoffmann
  • Jürgen Schiller
  • Maria Fedorova
چکیده

The pathophysiology of numerous human disorders, such as atherosclerosis, diabetes, obesity and Alzheimer's disease, is accompanied by increased production of reactive oxygen species (ROS). ROS can oxidatively damage nearly all biomolecules, including lipids, proteins and nucleic acids. In particular, (poly)unsaturated fatty acids within the phospholipid (PL) structure are easily oxidized by ROS to lipid peroxidation products (LPP) carrying reactive carbonyl groups. Carbonylated LPP are characterized by high in vivo toxicity due to their reactivity with nucleophilic substrates (Lys-, Cys-and His-residues in proteins or amino groups of phosphatidylethanolamines [PE]). Adducts of unsaturated LPP with PE amino groups have been reported before, whereas less is known about the reactivity of saturated alkanals - which are significantly increased in vivo under oxidative stress conditions - towards nucleophilic groups of PLs. Here, we present a study of new alkanal-dipalmitoyl-phosphatidylethanolamine (DPPE) adducts by MS-based approaches, using consecutive fragmentation (MS(n)) and multiple reaction monitoring techniques. At least eight different DPPE-hexanal adducts were identified, including Schiff base and amide adducts, six of which have not been reported before. The structures of these new compounds were determined by their fragmentation patterns using MS(n) experiments. The new PE-hexanal adducts contained dimeric and trimeric hexanal conjugates, including cyclic adducts. A new pyridine ring containing adduct of DPPE and hexanal was purified by HPLC, and its biological effects were investigated. Incubation of peripheral blood mononuclear cells and monocytes with modified DPPE did not result in increased production of TNF-α as one selected inflammation marker. However, incorporation of modified DPPE into 1,2-dipalmitoleoyl-sn-phosphatidylethanolamine multilamellar vesicles resulted in a negative shift of the transition temperature, indicating a possible role of alkanal-derived modifications in changes of membrane structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of dendriplexes by ion mobility-mass spectrometry.

Highly branched polyamidoamine (PAMAM) dendrimers presenting biological activities have been envisaged as non-viral gene delivery vectors. They are known to associate with nucleic acid (DNA) in non-covalent complexes via electrostatic interactions. Although their transfection efficiency has been proved, PAMAMs present a significant cytotoxicity due to their cationic surface. To overcome such a ...

متن کامل

Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry.

Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modificatio...

متن کامل

Automated Identification and Sequencing of Post-Translational Modifications Using PTM Discovery on the 4000 Q TRAP LC/MS/MS System

Overview Protein discovery research most commonly involves the identification and quantification of proteins that are relevant to a given biological state. Crucial to this is the characterization of the post-translational modifications on the proteins of interest. PTMs are covalent modification or processing events that change the properties of a protein through proteolytic cleavage or by addit...

متن کامل

Biological mass spectrometry: a primer.

Biological polymers undergo numerous significant and fascinating interactions, such as post-translational modifications, non-covalent associations and conformational changes. A valuable parameter for the characterization of a biopolymer is molecular weight. Modern methods of mass spectrometry, including electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry, a...

متن کامل

Ion mobility–mass spectrometry: a new paradigm for proteomics

Matrix-assisted laser desorption/ionization (MALDI) coupled with ion mobility–mass spectrometry (IM–MS) provides a rapid ( s–ms) means for the two-dimensional (2D) separation of complex biological samples (e.g., peptides, oligonucleotides, glycoconjugates, lipids, etc.), elucidation of solvent-free secondary structural elements (e.g., helices, -hairpins, random coils, etc.), rapid identificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2014